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Abstract
We obtain an analytic solution of the time-independent Schrödinger equation
in two dimensions for a charged particle moving in the field of an electric
quadrupole. The solution is written as a series in terms of special functions
that support a tridiagonal matrix representation for the angular and radial
components of the wave operator. This solution is for all energies, bound
as well as scattering states. The expansion coefficients of the wavefunction
are written in terms of orthogonal polynomials satisfying three-term recursion
relations. The charged particle could become bound to the quadrupole only if
its moment exceeds a certain critical value.

PACS numbers: 03.65.Ge, 34.80.Bm, 34.80.Lx, 34.50.Gb, 31.15.−p

1. Introduction

The interaction of a charged particle with an electric dipole and the formation of bounded
anions is a fundamental problem, which received a lot of attention in the physics literature
for more than 60 years [1, 2]. This interest was fueled by the observation that electron
capture by a molecule with a permanent electric dipole moment could take place only if
the dipole moment exceeds a certain minimum value which does not depend on the size of
the dipole [2]. Moreover, the electron binding properties of polar molecules have been the
topic of considerable theoretical and experimental interest [3]. Despite renewed interest in
this problem, no exact analytic solution (apart from our recent contribution [4]) was reported
in the literature. This is because, even in the ideal case of a point electric dipole in 3D,
the interaction is represented by the intractable non-central potential cos θ/r2 (in spherical
coordinates) which was known not to belong to any of the well-established classes of exactly
solvable problems. However, our approach [4] followed another path where we employ the
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Figure 1. An electric quadrupole configuration in 2D with d � r .
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Figure 2. The 2D electric quadrupole of figure 1 is equivalent, in 3D, to four thin parallel wires
with uniform charge distribution. Each wire is at a distance d from its nearest neighbors. The
charge q moves in a plane normal to the wires.

tools of our ‘Tridiagonal Physics’ program1 [5]. In this program, which is inspired by the
J-matrix method [6], we relax the usual restriction of a diagonal representation on the solution
space of the eigenvalue wave equation. We only require that the matrix representation of the
wave operator (radial and angular) be tridiagonal and symmetric. Consequently, this reduced
constraint results in a space of representations that is large enough to incorporate an exact
analytic solution for this noncentral potential. In this paper, we extend those developments to
the electric quadrupole in two dimensions. This constitutes the first contribution of its kind to
the solution of this problem.

Now, the Coulomb potential of a point charge (electric monopole) in two dimensions
is logarithmic in the distance from the charge. In appendix A, we address the issue of the
Coulomb problem in any dimension and calculate the potentials of a point electric dipole
and quadrupole in two dimensions. The problem of a point charge in the field of an electric
quadrupole in 2D (figure 1) is equivalent to the problem of a point charge in 3D moving in a
plane normal to four parallel uniform line charges whose configuration is shown in figure 2.
Consequently, the findings in this work (e.g., existence of a critical quadrupole moment for
electron capture) could, in fact, be tested in an appropriate experimental setup.

The two-dimensional time-independent Schrödinger equation for a particle of mass m and
charge q in an electrostatic potential V (�r) is[− 1

2
�∇2 + V (�r) − E

]
ψ = 0, (1.1)

1 ‘Tridiagonal Physics’ is the physics extracted from the analysis of the matrix representation of relevant operators
(e.g., the Hamiltonian) in a basis in which it is tridiagonal. It is inspired by the J-matrix method, which is one of its
major components.
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where �∇ is the two-dimensional Laplacian and we have used the atomic units h̄ = m = q = 1.
The energy, E, is real and it is either discrete or continuous. In the 2D cylindrical coordinates,
�r = {r, θ}, this wave equation could be written explicitly as follows:{

1

r

∂

∂ r
r

∂

∂ r
+

4

r2

[
(1 − x2)

∂2

∂ x2
− x

∂

∂ x

]
− 2V + 2E

}
ψ = 0, (1.2)

where x = sin 2θ chosen to be compatible with the angular dependence of the quadrupole
potential given in appendix A by equation (A.4). This choice results in a one-to-one map
between x and θ for only a quarter of the 2D plane (e.g., θ ∈ [−π

4 , +π
4

]
). Symmetry of the

problem (see, for example, figure 1) shows that for the complete solution of the problem it is
sufficient to obtain a solution in only a quarter of the plane. Now, equation (1.2) is separable
for potentials of the form

V (�r) = Vr(r) +
1

r2
Vθ(x). (1.3)

This is so because if we write the wavefunction as ψ(r, θ) = r
− 1

2 R(r)�(θ), then the wave
equation (1.2) with the potential (1.3) becomes separated in the two coordinates as follows:

[
(1 − x2)

d2

dx2
− x

d

dx
− 1

2
Vθ +

1

2
Eθ

]
� = 0, (1.4a)

(
d2

dr2
− 2Eθ

r2
− 2Vr + 2E

)
R = 0, (1.4b)

where Eθ is the separation constant, which is real and dimensionless. Square integrability is
with respect to the following integration measures:

∫
|ψ |2 d2�r = 2

∫ ∞

0
|R|2 dr

∫ +1

−1
(1 − x2)

− 1
2 |�|2 dx. (1.5)

Moreover, the components of the wavefunction must satisfy R(0) = R(∞) = 0 and
�(θ) = �(θ + 2π).

Now, we consider the problem of a charged particle moving in the field of a two-
dimensional electric quadrupole of moment p (see figure 1). Thus, as shown in appendix A,
the potential components become Vr = 0, Vθ = −(

4p
/
qa2

0

)
sin 2θ , where the length scale

a0 = 4πε0h̄
2/mq2 (for an electron, this is the Bohr radius). If we measure length (e.g.,

r and
√

p/q) in units of a0 then the energy will be given in units of m−1(h̄/a0)
2 and

Vθ → −4(p/q) sin 2θ . Moreover, the set of equations (1.4a) and (1.4b) shows that the
system’s energy E is a function of Eθ , which in turn is a function of the quadrupole moment.
With Vr = 0, equation (1.4b) becomes the wave equation for the inverse square potential. It
has been well established that bound state solutions in this potential could be supported only
if the dimensionless coupling parameter 2Eθ is less than the critical value − 1

4 [7]. Therefore,
for bound states we take 2Eθ = −ω2 − 1

4 , whereas for the continuum scattering states we
write 2Eθ = γ 2 − 1

4 , where γ and ω are real dimensionless parameters. In the following two
sections, we obtain the angular and radial components of the wavefunction for both cases.
These will be written as series in terms of discrete square integrable functions that support a
tridiagonal matrix representation for the wave operator.
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2. The angular component of the wavefunction

We expand the angular component of the wavefunction, �(θ), in a complete basis functions
{χn(x)}∞n=0 as �(θ) = ∑∞

n=0 fn(Eθ)χn(x). These basis elements must satisfy the boundary
conditions in the configuration space with coordinate x ∈ [−1, +1]. We write them as2

χn(x) = an(1 − x2)νDµ
n (x), (2.1)

where D
µ
n (x) are the ‘improved’ ultra-spherical Gegenbauer (IUSG) polynomials shown in

appendix B3 and n = 0, 1, 2, . . .. The dimensionless real parameters ν � 0, µ > − 1
2 and an

is the normalization constant associated with the orthogonality of these polynomials,

an =
√

2(n + µ)

2µ�(µ + 1/2)

√
�(n + 2µ)

�(n + 1)
. (2.2)

Using the differential equation (B.8) and differential formula (B.9) for these IUSG
polynomials, shown in appendix B, we can write the action of the angular differential operator
of equation (1.4a) on the basis element (2.1) as follows:

(Hθ − Eθ)|χn〉 =
{ −4

1 − x2
[ν(2ν − 1) + n(2ν − µ)] + 2(n + 2ν)2 + Vθ − Eθ

}
|χn〉

− 4n(µ − 2ν)
x

1 − x2

an

an−1
|χn−1〉. (2.3)

The recurrence relation (B.6) and orthogonality formula (B.10) of the IUSG polynomials show
that a tridiagonal matrix representation for 〈χn|Hθ − Eθ |χn′〉 is achievable with Vθ ∼ x if
and only if µ = 2ν and µ = 0 or 1. The case µ = 1 is to be rejected since the associated
ground state wavefunction is not nodeless. Now, to obtain an explicit expression for the matrix
representation 〈χn|Hθ − Eθ |χn′〉, we project the action of the angular wave operator given
by (2.3) on the basis elements from left. Employing again the orthogonality property and
recurrence relation of the IUSG polynomials, we obtain the following tridiagonal structure:

〈χn|Hθ − Eθ |χn′ 〉 = (2n2 − Eθ)δn,n′ − 2ξ(δn,n′+1 + δn,n′−1), (2.4)

where ξ = p/q. Now, we start by considering the continuum scattering states and write
2Eθ ≡ γ 2 − 1

4 , where γ is a dimensionless real parameter. Equation (1.4b) shows that γ plays
the role of the azimuthal quantum number in cylindrically symmetric 2D problems. However,
unlike the azimuthal number that assumes only integral values, γ is a continuous parameter.
The tridiagonal matrix representation of the angular wave operator in (2.4) makes the wave
equation (1.4a) equivalent to the following three-term recursion relation for the expansion
coefficients of the angular wavefunction:

1
4γ 2f ξ

n = (
n2 + 1

16

)
f ξ

n − ξ
(
f

ξ

n−1 + f
ξ

n+1

)
. (2.5)

This relation implies that if ξ becomes too large then reality of the representation will be
compromised. To maintain reality, the quadrupole moment should not exceed a certain critical

2 One could try to use the more general basis χn(x) ∼ (1 − x)α(1 + x)βP
(µ,ν)
n (x), where P

(µ,ν)
n (x) are the Jacobi

polynomials. However, the tridiagonal requirement dictates that 2α = µ + 1
2 , 2β = ν + 1

2 , and that the parameters µ

and ν are constrained to the following four possibilities (µ, ν) = (− 1
2 , − 1

2

)
,
(
+ 1

2 , + 1
2

)
,
(− 1

2 , + 1
2

)
,
(
+ 1

2 , − 1
2

)
. The

only one that survives is the first, which corresponds to the Chebyshev polynomials found in section 2.
3 The classical ultra-spherical (Gegenbauer) polynomial C

µ
n (x) is ill defined for µ = 0. In fact, using the standard

general definition of this polynomial in terms of the hypergeometric function, one obtains C0
n(x) = δn,0. That is why

one is inconvenienced to deal with additional formulas, relations and identities that apply only for the special case
µ = 0. We use this improved version of the polynomial (of course, with the same weight function, roots, etc) because
it does not suffer from this ill definition at µ = 0. For the case n = µ = 0, the right-hand side of the orthogonality
relation (B.10), when evaluated using lim

z→0
[z �(z)] = 1, gives the value π .



Charged particle in the field of an electric quadrupole in two dimensions 14847

value. It is the smallest value of ξ that makes the right-hand side of (2.5) vanish. Below,
we show how to calculate these critical values. The solution of the recursion relation (2.5)
for a fixed ξ is a function in γ that is defined modulo an arbitrary non-singular factor that
depends on γ but otherwise independent of n. If we choose the standard normalization by
taking the initial seed as f

ξ

0 (γ ) = 1 then the results are polynomials in 1
4γ 2. To the best of our

knowledge, these polynomials were not studied elsewhere. Since they are associated with the
electric quadrupole potential ξ sin 2θ

r2 we refer to them as the ‘quadrupole polynomials’. They

are completely defined to all degrees by the recursion (2.5) and the initial values f
ξ

0 = 1 and
f

ξ

1 = 1
4ξ

(
1
4 − γ 2

)
. Now, since the Chebyshev polynomials of the first kind are related to the

IUSG polynomial as Tn(x) = D0
n(x) we can write the angular component of the wavefunction

for the continuum scattering states as the L2-series:

�(θ) = Aξ
γ

∞∑
n=0

√
(2 − δn0)π−1f ξ

n (γ )Tn(x), (2.6)

where Aξ
γ is a normalization constant that depends on the physical parameters of the

problem but, otherwise, independent of θ and n. To make �(θ) γ -normalizable, we write
Aξ

γ =
√

ρξ (γ ), where ρξ (γ ) is the weight (density) function associated with the quadrupole

polynomials
{
f

ξ
n

}
. That is,∫
ρξ (γ )f ξ

n (γ )f
ξ

n′(γ ) dγ = δnn′ . (2.7)

It should be obvious from equation (2.4) that the diagonal representation, where Hθ |χn〉 =
Eθ |χn〉, is obtained if and only if ξ = 0 and γ = ±

√
4n2 + 1/4. This means that a diagonal

representation is obtained only in the absence of the electric quadrupole. This is the reason
why the quadrupole potential in 2D, ξ sin 2θ

r2 , is not found in the literature among the elements of
the class of exactly solvable problems. It is important to note that the diagonal representation
we are referring to here is associated with the operator Hθ . That is, (Hθ)nn′ = Eθ δnn′. One
should not confuse this with the discrete bound-state spectrum, which is associated with the
diagonal representation of the total Hamiltonian H (i.e., Hnn′ = Eδnn′). Consequently, it is
neither required nor necessary for bound states to have a vanishing quadrupole moment or that
γ be quantized as shown above. On the other hand, for bound states we take 2Eθ = −ω2 − 1

4 ,
where ω is a real dimensionless parameter. This is equivalent to the above with γ → i ω.
Thus, the recursion relation (2.5) changes into

1
4ω2f ξ

n = −(
n2 + 1

16

)
f ξ

n + ξ
(
f

ξ

n−1 + f
ξ

n+1

)
. (2.8)

We refer to the polynomial solution of this recursion relation as the ‘quadrupole polynomials’
of the second kind. They are completely defined by this recursion and the initial values f

ξ

0 = 1
and f

ξ

1 = 1
4ξ

(
1
4 + ω2

)
. One can easily show that the Chebyshev polynomial of the second kind

is a special limiting case of this polynomial as follows:

Un(x) = lim
|ξ |→∞

f ξ
n (2

√
2ξx). (2.9)

The polynomial solutions of (2.5) are the ‘quadrupole polynomials’ of the first kind. By
comparing the recursion (2.5) with (2.8) we can relate these two kinds by the parameter map
γ → i ω. Therefore, the bound states angular component of the wavefunction is identical
to (2.6) but with γ → i ω. However, relation (2.8) implies that if ξ becomes too small then
reality of the representation will be violated. To maintain reality, the quadrupole moment
should be greater than a certain critical value. To obtain this critical quadrupole value, we



14848 A D Alhaidari

Table 1. A sequence of the lowest eigenvalue of the N × N tridiagonal matrix (2.10) converging
with N to the critical value of the quadrupole moment (in atomic units).

N ξ (au)

2 0.257 694 101 601 104
3 0.255 734 422 198 048
4 0.255 730 974 701 113
5 0.255 730 973 148 881
6 0.255 730 973 148 629
7 0.255 730 973 148 629

Table 2. The smallest positive eigenvalues of the N × N tridiagonal matrix (2.10) for N = 200.
They correspond to the critical values of the quadrupole moment (in atomic units) for the ground
state (n = 0) as well as few of the lowest exited states (n � 1).

N ξ (au)

0 0.255 730 973 1486
1 5.409 175 167 2900
2 17.434 377 594 381
3 36.338 459 922 255
4 62.118 980 707 609
5 94.775 228 357 085
6 134.306 944 119 01
7 180.714 011 523 35
8 233.996 370 417 31
9 294.153 986 600 63

10 361.186 839 193 18

investigate equation (2.8), which could be written as the eigenvalue equation h|f 〉 = 1
4ω2|f 〉,

where h is the tridiagonal symmetric matrix:

hnm = −(
n2 + 1

16

)
δnm + ξ(δn,m+1 + δn,m−1). (2.10)

Therefore, the determinant of the matrix h− 1
4ω2I must vanish, where I is the identity matrix.

This requirement is necessary so that the kernel of this matrix operator becomes non-singular
and prevents the solution space from being empty. Consequently, this translates into a condition
on the electric quadrupole moment ξ that depends on ω. The critical value of ξ is the smallest
value that satisfies this condition. It corresponds to the case where the eigenvalue of the matrix
h vanishes (i.e. when ω = 0). Table 1 shows a sequence of these critical values for an N-
dimensional matrix h with N = 2, 3, . . . , 7. It is evident that the sequence converges rapidly
with N for the given choice of significant digits. In fact, for each N one finds a set of 2K zeros,
{±ξi}Ki=1, of the determinant where K = N

2 or K = N−1
2 if N is even or odd, respectively.

The positive zeros (for large enough N) are the critical values of the quadrupole moment
corresponding to all vibrational states (the ground state as well as exited states). Table 2
lists the lowest positive zeros for large N.

3. The radial component of the wavefunction

The radial wavefunction R(r) could be taken as an element in the space spanned by the
following L2 functions that are compatible with the domain of the radial component of the
Hamiltonian Hr:

φk(y) = bky
β e−y/2Lα

k (y), (3.1)
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where y = λr , k = 0, 1, 2, . . . and Lα
k (y) is the associated Laguerre polynomial of degree

k. The real parameter λ is positive with an inverse length dimension (i.e., it is a length
scale parameter). On the other hand, the dimensionless parameters β > 0 and α > −1.
The normalization constant, bk = √

λ �(k + 1)/�(k + α + 1), is chosen to conform to the
orthogonality property of the Laguerre polynomials. Using the differential equation (B.3) and
differential formula (B.4) for the Laguerre polynomials, we can calculate the action of the
radial differential wave operator in equation (1.4b) on the basis element (3.1) giving

(Hr − E)|φk〉 = λ2

2

[
k

y

(
1 +

α + 1 − 2β

y

)
+

γ 2 − (
β − 1

2

)2

y2
+

β

y
− 1

4
− 2

λ2
E

]

+
λ2

2

(k + α)(2β − α − 1)

y2

bk

bk−1
|φk−1〉. (3.2)

Here, we are considering the continuum scattering states (E > 0) where we took 2Eθ ≡ γ 2− 1
4 .

The recurrence relation (B.1) and orthogonality formula (B.5) for the Laguerre polynomials
show that a tridiagonal matrix representation 〈φk|Hr − E|φk′〉 is possible for positive energies
if and only if α = 2β − 1 and

(
β − 1

2

)2 = γ 2. That is,

β =
{

1
2 + γ γ > 0
1
2 − γ γ < 0,

(3.3)

which makes β always greater than or equal to + 1
2 and α = ±2γ for ±γ > 0. We expand

the radial component of the wavefunction in the basis (3.1) as R(r) = ∑∞
k=0 g

γ

k (E)φk(y) and
substitute this in the wave equation (1.4b). Employing the action of the wave operator on the
basis as given by equation (3.2) and using the recurrence relation and orthogonality formula
of the Laguerre polynomials, we obtain the following tridiagonal matrix representation of the
radial wave operator:

〈φk|Hr − E|φk′ 〉 = (2k + α + 1)

(
λ2

8
− E

)
δk,k′

+

(
λ2

8
+ E

)
[
√

k(k + α)δk,k′+1 +
√

(k + 1)(k + α + 1)δk,k′−1]. (3.4)

Therefore, the resulting three-term recursion relation for the expansion coefficients of the
radial wavefunction becomes

(2k + α + 1) (cos ϕ)g
γ

k =
√

k(k + α) g
γ

k−1 +
√

(k + 1)(k + α + 1) g
γ

k+1, (3.5)

where cos ϕ = 8E−λ2

8E+λ2 . Rewriting this recursion in terms of the polynomials S
γ

k (E)= bk g
γ

k (E),
we obtain a familiar recursion relation as follows:

2

(
k +

α + 1

2

)
(cos ϕ)S

γ

k = k S
γ

k−1 + (k + α + 1)S
γ

k+1. (3.6)

We compare this three-term recursion relation to that of the IUSG polynomial (B.6) in
appendix B. Thus, for the continuum case, we obtain the following L2-series solutions for
the radial component of the wavefunction:

R(r) = BE
γ (λr)

α+1
2 e−λr/2

∞∑
k=0

D
α+1

2
k (cos ϕ)Lα

k (λr), (3.7)

where α = ±2γ for ±γ > 0. The normalization constant BE
γ depends on γ and the

energy but, otherwise, independent of r and k. To make R(r) energy normalized we write
BE

γ = (sin ϕ)1+ α
2 /

√
E.
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The basis (3.1) is sometimes referred to as the ‘Laguerre basis’. There exists another
equivalent representation for the continuum radial wavefunction in a space spanned by the
same basis but with y = (λr)2 and bk = √

2λ �(k + 1)/�(k + α + 1). This basis is referred to
as the ‘oscillator basis’. A tridiagonal matrix for the radial wave operator in this basis is also
possible but only if 2β = α + 1

2 and α = ±γ for ±γ > 0. Writing g
γ

k (E) = bk S
γ

k (E), the
resulting three-term recursion relation, in this case, reads

2E

λ2
S

γ

k = (2k + α + 1)S
γ

k + (k + α)S
γ

k−1 + (k + 1)S
γ

k+1. (3.8)

Comparing this with the recursion relation (B.1) for the Laguerre polynomials, we conclude
that S

γ

k (E) ∝ (−1)kLα
k (2E/λ2). Thus, we can write the radial component of the continuum

wavefunction as follows:

R(r) = BE
γ (λr)α+ 1

2 e−λ2r2/2
∞∑

k=0

(−1)k
�(k + 1)

�(k + α + 1)
Lα

k (2E/λ2)Lα
k (λ2r2). (3.9)

The sum in this expression could be written in a closed form [8]. If we also impose L2 energy
normalization by using the weight function for the Laguerre polynomials Lα

k (2E/λ2), we
finally obtain

R(r) = Bα

2α+1�(α + 1)

(
1

2
Er2

) α
2 + 1

4

0F1

(
;α + 1;−1

2
Er2

)
(3.10)

where Bα is an overall constant factor.
Now, we turn attention to the radial component of the wavefunction for bound states. In

this case, we write 2Eθ = − 1
4 −ω2 and a real tridiagonal matrix representation 〈φk|Hr −E|φk′ 〉

is possible only in the Laguerre basis (3.1) with 2β = α + 2 and λ2 = −8E. Thus, the basis
becomes energy dependent via the parameter λ and we obtain the following tridiagonal matrix
elements for the radial wave operator in this basis:

〈φk|Hr − E|φk′ 〉 = 4E

[
ω2 +

(
α + 1

2

)2

+ k − (2k + α + 1)
(
k +

α

2
+ 1

)]
δk,k′

+ 4E
[(

k +
α

2

) √
k (k + α)δk,k′+1 +

(
k +

α

2
+ 1

) √
(k + 1)(k + α + 1)δk,k′−1

]
.

(3.11)

Thus, the radial wave equation becomes equivalent to the following three-term recursion
relation for the expansion coefficients of the wavefunction:

ω2Sk =
[
(k + α + 1)

(
k +

α

2
+ 1

)
+ k

(
k +

α

2

)
−

(
α + 1

2

)2
]

Sk

− k
(
k +

α

2

)
Sk−1 − (k + α + 1)

(
k +

α

2
+ 1

)
Sk+1 (3.12)

where gω
k (E) = bk Sk(ω;E). One should observe the curious absence of the energy from

this recursion relation. This implies that the dependence of Sk(ω;E) on energy is via an
overall factor, which is independent of k, say Fα

ω (E). The source of this factorization comes
from (3.11), where all elements of the matrix representation of the radial wave operator
have the common factor 4E. This means that the wave equation, in this representation, is
satisfied independent of any value of the energy as long as it is negative (due to λ2 = −8E).
Consequently, this property has a dramatic implication on the bound state energy spectrum. It
implies that for any choice of non-positive energy a bound state could be supported. However,
the diagonal constraint on the representation (3.11) dictates that E = 0. These observations,
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concerning the peculiar behavior of the bound states energy spectrum, have already been
reported and analyzed in the literature for the inverse square potential. See, for example, [7]
and references therein. Regularization procedures [7, 9] and self-adjoint extensions of the
Hamiltonian [10] were introduced to handle these irregularities (anomalies).

Now, equation (3.12) is a special case of the three-term recursion relation of the continuous
dual Hahn orthogonal polynomials, Qµ

k (x; a, b), where x is real and µ, a, b are positive except
for a possible pair of complex conjugates with positive real parts [11]. The general recursion
relation for these polynomials reads

x2Q
µ

k = [(k + µ + a)(k + µ + b) + k (k + a + b − 1) − µ2]Qµ

k

− k(k + a + b − 1)Q
µ

k−1 − (k + µ + a)(k + µ + b)Q
µ

k+1 (3.13)

and with the standard initial seed, Q
µ

0 = 1. These polynomials could be written in terms of
the generalized hypergeometric function as follows:

Q
µ

k (x; a, b) = 3F2

(−k, µ + i x, µ − ix
µ + a, µ + b

∣∣∣∣ 1

)
. (3.14)

The associated orthogonality relation is∫ ∞

0
ρµ(x)Qµ

n (x; a, b)Qµ
m(x; a, b) dx = �(n + 1)�(n + a + b)

�(n + µ + a)�(n + µ + b)
δnm, (3.15)

where the weight function is ρµ(x) = 1
2π

∣∣�(µ+i x)�(a+i x)�(b+i x)

�(µ+a)�(µ+b)�(2i x)

∣∣2
. Comparing (3.13) with

(3.12), we can write gω
k (E) ∝ bk Q

α+1
2

k

(
ω; α+1

2 , 1
2

)
. Thus, the expansion coefficients are

defined modulo the arbitrary factor Fα
ω (E) that depends on ω and E. Finally, the radial

component of the wavefunction for the bound state at energy E becomes

R(E, r) = Fα
ω (E)(2ηr)

α
2 +1 e−ηr

∞∑
k=0

�(k + 1)

�(k + α + 1)
Q

α+1
2

k

(
ω; α + 1

2
,

1

2

)
Lα

k (2ηr), (3.16)

where the energy-dependent wave number η is defined by E = − 1
2η2.

4. Conclusion and discussion

In a complete discrete L2 basis, we removed the diagonal constraint on the matrix representation
of the wave equation. That is, the energy eigenvalue equation is not restricted to the usual
form H |φn〉 = En|φn〉 but is allowed to take the less constrained form (H − E)|φn〉 ∼ |φn〉 +
|φn−1〉 + |φn+1〉. As a result, the solution space incorporates new problems that were not
members of the class of exactly solvable potentials. In particular, recently we were able to
obtain an exact solution for the noncentral dipole potential in 3D, cos θ/r2 [4]. Thus, we
were able to present an analytic description for the interaction of an electron with a molecule
that has a permanent electric dipole moment. In the present work, we showed that it was also
possible to extend the same development to the electric quadrupole potential in 2D, sin 2θ/r2.
However, our approach is not compatible with the electric dipole potential in 2D, sin θ/r , nor
with the electric quadrupole potential in 3D.

In principle, the theoretical findings of this work could be tested in an appropriate
experimental setup as was suggested in the introduction section. For example, one could
verify the existence of a critical quadrupole moment (0.2557 au) for an electron capture in a
2D system.
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Appendix A. The Coulomb problem in any dimension, the n-dimensional hydrogen
atom and the electric quadrupole potential in 2D

The Coulomb problem in any dimension is defined as that of an electrostatic point charge at the
origin of free space. This problem in 3D is one of the most familiar of all problems in physics.
A simple method to visualize the Coulomb problem in n dimensions, where n is less than 3, is
as follows. In 3D, one constructs a uniform (3−n)-dimensional charge distribution having the
desired n-dimensional symmetry. Consequently, one obtains the following situations in 1D,
2D and 3D, respectively.

(1) The Coulomb potential in one dimension with coordinate x ∈ [−∞, +∞] is proportional
to the distance from the origin (i.e., V ∼ |x|) resulting in a constant electric field
pointing everywhere away from, or toward, the charge. This could easily be understood
by considering the problem of an infinite uniform surface charge distribution in the y–z

plane. However, on the semi-infinite real line, x ∈ [0, +∞], V ∼ x.
(2) The Coulomb potential in two dimensions with circular polar coordinates (r, θ ) is

logarithmic (i.e., V ∼ ln r) resulting in an electric field which varies as r−1. This
could also be understood by considering the problem of an infinite uniform linear charge
distribution along the z-axis.

(3) The Coulomb potential in three dimensions with spherical polar coordinates (r, θ , φ) is
V ∼ r−1. This is the familiar 3D problem.

For n � 3, one can easily deduce that the Coulomb potential in n-dimensional Euclidean space
is V (r) ∼ r2−n, where r =

√
x2

1 + x2
2 + · · · + x2

n is the distance from the point charge. Now,
the problem in n dimensions with V (r) ∼ r−1 has sometimes been referred to in the literature
by the more appropriate term: the ‘n-dimensional hydrogen atom’ [12]. It is only for n = 3
where this and the Coulomb problem coincide. Now, we consider the 2D problem.

We represent the 2D Coulomb problem in three dimensions by an infinite linear charge
of uniform density σ (charge per unit length) along the z-axis. It is an elementary exercise to
find the electrostatic potential due to this charge distribution in the 2D xy-plane (equivalently,
the 2D cylindrical rθ -plane) as

V (r) = V (r0) − σ

2πε0
ln(r/r0), (A.1)

where r0 is a reference radius. Now, going back to the 2D problem and writing the value of the
charge at the origin as Q = σr0, the Coulomb potential in 2D for a point charge Q (monopole)
at the origin is written as

VM(r) = V (r0) − Q

2πε0r0
ln(r/r0). (A.2)

Using this result, one can find the potential of the electric dipole in 2D shown in figure 3 with
d
r

→ 0 as VD(r, θ) = VM(r+) − VM(r−), where d is the distance between the two charges and
r± = r ∓ 1

2 d sin θ . The result is

VD(r, θ) = pD

2πε0r0

sin θ

r
, (A.3)
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Figure 3. The electric dipole configuration in 2D with d � r .
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Figure 4. The electric quadrupole is the sum of two electric dipoles.

where the electric dipole moment pD = Qd. Similarly, using this result, one could find the
potential of the electric quadrupole configuration shown in figure 1 with d

r
→ 0. This could

be done (as shown in figure 4) by writing VQ(r, θ) = VD(r+, θ+) − VD(r−, θ−), where now
r± = r ∓ 1

2 d cos θ and θ± = θ ± d sin θ
2r

giving

VQ(r, θ) = pQ

2πε0r0

sin 2θ

r2
, (A.4)

where the electric quadrupole moment pQ = Qd2. However, if the quadrupole is to be
constructed from a charge +2Q at the origin and two −Q charges located at (r, θ) = (

d,±π
2

)
then the potential will be the same as (A.4) except that sin 2θ is replaced by cos 2θ . Now in
the limit as d → 0, the length scale needed to define r0 is lost. However, if a test particle of
mass m and charge q is introduced in the problem, then we recover the length scale as, for
example, pD/q,

√
pQ/q or a0 = 4πε0h̄

2/mq2. Note that the Compton wavelength h̄
mc

does
not come into play since the problem is nonrelativistic (c → ∞). Now, in the monopole case
we can only use a0 as the length scale. In this work, our choice is r0 = 1

2a0. Of course, one
can make a different choice for the factor that multiplies a0 by simply redefining (rescaling)
the charge Q or moments.
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Appendix B. The associated Laguerre polynomials and the improved ultra-spherical
(Gegenbauer) polynomials

(1) The associated Laguerre polynomials Lν
n(x), where x ∈ [0, +∞] and ν > −1:

xLν
n(x) = (2n + ν + 1)Lν

n(x) − (n + ν)Lν
n−1(x) − (n + 1)Lν

n+1(x) (B.1)

Lν
n(x) = �(n + ν + 1)

�(n + 1)�(ν + 1)
1F1(−n; ν + 1; x) (B.2)

[
x

d2

dx2
+ (ν + 1 − x)

d

dx
+ n

]
Lν

n(x) = 0 (B.3)

x
d

dx
Lν

n = nLν
n − (n + ν)Lν

n−1 (B.4)∫ ∞

0
xν e−xLν

n(x)Lν
m(x) dx = �(n + ν + 1)

�(n + 1)
δnm. (B.5)

(2) The improved ultra-spherical (Gegenbauer) polynomials D
µ
n (x), where x ∈ [−1, +1] and

µ > − 1
2 (see footnote 2):

2(n + µ) x Dµ
n (x) = nD

µ

n−1(x) + (n + 2µ)D
µ

n+1(x) (B.6)

Dµ
n (x) = �(µ + 1/2)�(n + 1)

�(n + µ + 1/2)
P

(µ− 1
2 ,µ− 1

2 )
n (x) = 2F1

(
−n, n + 2µ;µ +

1

2
; 1 − x

2

)
(B.7)

[
(1 − x2)

d2

dx2
− (2µ + 1)x

d

dx
+ n(n + 2µ)

]
Dµ

n (x) = 0 (B.8)

(1 − x2)
d

dx
Dµ

n = −n x Dµ
n + nD

µ

n−1 (B.9)

∫ +1

−1

(
1 − x2

)µ− 1
2 Dµ

n (x)Dµ
m(x) dx = 22µ−1 �(µ + 1/2)2�(n + 1)

(n + µ)�(n + 2µ)
δnm. (B.10)
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